An asymptotic extension of Moran construction in metric measure spaces

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Isoperimetry of Balls in Metric Measure Spaces

In this paper, we study the asymptotic behavior of the volume of spheres in metric measure spaces. We first introduce a general setting adapted to the study of asymptotic isoperimetry in a general class of metric measure spaces. Let A be a family of subsets of a metric measure space (X, d, μ), with finite, unbounded volume. For t > 0, we define: I ↓ A(t) = inf A∈A,μ(A)≥t μ(∂A). We say that A is...

متن کامل

Marked Metric Measure Spaces

A marked metric measure space (mmm-space) is a triple (X , r,μ), where (X , r) is a complete and separable metric space and μ is a probability measure on X × I for some Polish space I of possible marks. We study the space of all (equivalence classes of) marked metric measure spaces for some fixed I . It arises as a state space in the construction of Markov processes which take values in random ...

متن کامل

On Asymptotic Pointwise Contractions in Metric Spaces

We discuss the existence of fixed points of asymptotic pointwise mappings in metric spaces. This is the nonlinear version of some known results proved in Banach spaces. We also discuss the case of multivalued mappings. MSC: Primary 47H09; Secondary 47H10.

متن کامل

Quasi-metric Spaces with Measure

The phenomenon of concentration of measure on high dimensional structures is usually stated in terms of a metric space with a Borel measure, also called an mm-space. We extend some of the mm-space concepts to the setting of a quasi-metric space with probability measure (pq-space). Our motivation comes from biological sequence comparison: we show that many common similarity measures on biologica...

متن کامل

The Asymptotic Rank of Metric Spaces

In this article we define and study a notion of asymptotic rank for metric spaces and show in our main theorem that for a large class of spaces, the asymptotic rank is characterized by the growth of the higher filling functions. For a proper, cocompact, simplyconnected geodesic metric space of non-curvature in the sense of Alexandrov the asymptotic rank equals its Euclidean rank.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tsukuba Journal of Mathematics

سال: 2016

ISSN: 0387-4982

DOI: 10.21099/tkbjm/1461270054